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We study the dynamics of the phase behavior of a polymer blend in the presence of shear flow. By adopting
a two-fluid picture and using a generalization of the concept of material derivative, we construct kinetic
equations that describe the phase behavior of polymer blends in the presence of external flow. A phenomeno-
logical form for the shear modulus for the blend is proposed. The study indicates that a nonlinear dependence
of the shear modulus of the blend on the volume fraction of one of the species is crucial for a shift in the
stability line to be induced by shear flow.@S1063-651X~99!12501-7#
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I. INTRODUCTION

The dynamics of the phase behavior in polymer mixtu
under external flow fields has aroused great interest over
last two decades@1–10#. The motivation for these studies
twofold. First, the effect of viscoelasticity on the phase b
havior of polymer mixtures can be directly detected for so
macroscopic flows. Secondly, many industrial process
such as extrusion and painting processes, generate shea
fields in polymer solutions and melts. In order to gain furth
insight into nonequilibrium phase transitions and to optim
these industrial processes, one must understand the p
behavior of polymer mixtures in the presence of a flow fie
Experimentally, a number of groups have reported that
phase behavior of polymer mixtures can be dramatic
changed by macroscopic flow fields. In particular, f
polymer-solvent mixtures in the presence of a shear flow
greatly enhanced turbidity has been observed at tempera
much higher than the equilibrium critical temperature@1–3#.
To study the mechanism of the observed phenomeno
polymer solutions, a number of theoretical efforts have b
made @5,8–10#, and it is now understood that a nonline
concentration dependence of the shear modulus is crucia
an upward shift of the phase separation temperature@10#.
The temperature shift is proportional to the square of
shear strength in the regime of weak shear@8,10#.

Although some experiments have been carried out
polymer blends under external flow@4#, theoretically, one
knows very little about the phase behavior of this syste
Doi and Onuki first discussed the Langevin equations
PRE 591063-651X/99/59~1!/603~9!/$15.00
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scribing the dynamics of phase separation of a polymer bl
@7#. However, to our knowledge, the full consequences of
equations have not been explored. Moreover, the orig
approach employed in the ground-breaking work of Doi a
Onuki prevents these kinetic equations from reducing to
polymer-solution case. Here, we present an expanded de
tion, in which the difference between the Lagrangian a
Eulerian descriptions has been taken into account. Usin
phenomenological form for the shear modulus of a polym
blend, we can carry out a linear stability analysis for t
model and find that the equilibrium spinodal line can
shifted in a complicated fashion by the shear flow. The p
pose of this paper is to report on these studies and desc
the relevant techniques in detail.

The system consists of two kinds of polymers with diffe
ent degrees of polymerization,NA andNB . The volume frac-
tion of polymer A at space-time point (r ,t) is denoted by
fA(r ,t)5f(r ,t), and the volume fraction of polymerB is
then fB(r ,t)512f(r ,t). We make the assumption tha
monomers of both species have the same specific volu
which can be expressed as@6–8#

rA~r ,t !

f~r ,t !
5

rB~r ,t !

12f~r ,t !
5r, ~1!

whererA and rB are the respective mass densities of po
mers A and B and r is the total mass density, which is
constant. This assumption is consistent with the incompre
ibility of the system. In the two-fluid picture@6–9#, the two
species are moving with different velocities, so that bo
603 ©1999 The American Physical Society
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604 PRE 59TAO SUN, ANNA C. BALAZS, AND DAVID JASNOW
bulk flow of the fluid and mutual diffusion of the two spe
cies, accompanied by chain deformation, take place simu
neously. Our task is to study the effect of flow and cha
deformation on the dynamics of the phase behavior of
system.

The paper is organized as follows. In Sec. II, we fi
discuss appropriate material derivatives and then derive
kinetic equations for the fluid velocityv and volume fraction
f. In Sec. III, we perform a linear stability analysis of th
model, from which the effect of flow on the domain of line
stability can be obtained. Finally, our conclusions are brie
summarized in Sec. IV.

II. MODEL

A polymer blend is a viscoelastic system, sharing featu
of an elastic continuum and a viscous fluid. The system
elastic, but it only has a ‘‘faded’’ memory. The system
viscous, but it can bear deformation on some time scales
derive the kinetic equations for such a system, one must
on familiar methods in studies of deformable media, as w
as techniques for viscous fluids.

A. Material derivatives

In continuum mechanics, one uses both Lagrangian
Eulerian coordinates to describe the motion of a mate
element@11,12#. The Lagrangian coordinates, which can
denoted bya5$ai%,i 51,2,3, are used to label the materi
elements or ‘‘particles’’ in a reference configuration~usually
the undeformed state!, while the Eulerian coordinates, de
noted byr 5$r i%,i 51,2,3, are the coordinates of the particl
in the current configuration. The two coordinates are rela
through the following equations:

r 5r ~a,t !, ~2!

a5a~r ,t !. ~3!

The velocity of the material element that is currently loca
at the pointr is defined as the time rate of change of
position,

v5S ]r

]t D
a

, ~4!

where the subscripta is used to emphasize the fact that t
derivative is to be evaluated for a particular material elem
the Lagrangian coordinates of which area. This is the usual
material derivative. In the Eulerian description, the mate
derivative of any property pertaining to the particle labe
by the Lagrangian coordinatea is given by

D

Dt
5

]

]t
1v•¹, ~5!

wherev is the velocity of the particlea at positionr, given in
Eq. ~4!. For small deformations in which the Lagrangia
strain tensor and the Eulerian strain tensor have the s
form, the strain tensore is the symmetric part of the dis
placement gradient tensor,

e5 1
2 @¹~Dr !1¹~Dr !†#, ~6!
a-
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whereDr 5r 2a, and the dagger superscript stands for t
transposition of tensors. Notice thate is the total local strain
of the composite material. This point will be discussed fu
ther, below. The material derivative of the strain tensor
given by @11#,

De

Dt
5 1

2 ~¹v1¹v†!. ~7!

Finally, the principle of conservation of mass leads direc
to the following well-known formula@11–13#

d

dtE d3rr~r ,t !Q~r ,t !5E d3rr~r ,t !
D

Dt
Q~r ,t !, ~8!

where Q(r ,t) is any physical quantity per unit mass an
r(r ,t) is the mass density of the material.

We now generalize the above concepts to the two-fl
picture of polymer blends. As usual, we choose the un
formed state as the reference configuration, in which e
material particle is identified by its Lagrangian coordinatesa.
Since in the present situation there are two kinds of mate
particles moving with different velocities in the system, o
should distinguish the Lagrangian coordinates for the t
species. We denote the Lagrangian coordinates of the
ticles of polymersA andB by aA andaB , respectively. Then
Eq. ~4! can be generalized as

vA5S ]r

]t D
aA

, ~9!

vB5S ]r

]t D
aB

. ~10!

The physical meaning of Eqs.~9! and ~10! is as follows. At
each space-time point in the current configuration, there
two velocities,vA(r ,t) andvB(r ,t), which will be acquired
by the material particles passing through this point, depe
ing on the type of material particles. That is, particles
polymer A pass the point with velocityvA(r ,t), while par-
ticles of polymer B pass the same point with velocit
vB(r ,t). The fluid velocity~average velocity! of this point is
given by

v~r ,t !5f~r ,t !vA~r ,t !1@12f~r ,t !#vB~r ,t !. ~11!

Naturally, corresponding to Eqs.~9! and~10!, we may intro-
duce two kinds of material derivatives in the system,

S D

Dt D
A

5
]

]t
1vA•¹, ~12!

S D

Dt D
B

5
]

]t
1vB•¹. ~13!

If we focus on particles of polymerA, the material derivative
is given by Eq.~12!; similarly, the material derivative for
speciesB is given by Eq.~13!. The essential point is that an
difference betweenvA ,vB , and the center of mass velocity
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PRE 59 605DYNAMICS OF THE PHASE BEHAVIOR OF A POLYMER . . .
due to mutual diffusion. A constitutive relation is required
fix the diffusion flux or, equivalently,vA2vB . We will re-
turn to this point later.

It is easy to evaluate the two material derivatives for so
basic physical quantities, such as the volume fractionf and
strain tensore. First, from the continuity equations for bot
species

]rA~r ,t !

]t
1¹•rA~r ,t !vA~r ,t !50, ~14!

]rB~r ,t !

]t
1¹•rB~r ,t !vB~r ,t !50, ~15!

we can obtain the expressions for the material derivative
the volume fraction

FDf~r ,t !

Dt G
A

52f~r ,t !¹•vA~r ,t !, ~16!

FDf~r ,t !

Dt G
B

5@12f~r ,t !#¹•vB~r ,t !, ~17!

where Eq.~1! has been used. Note that, augmented by
~1!, the continuity equations lead directly to the incompre
ibility condition

¹•v5¹•fvA1¹•~12f!vB50. ~18!

Next, for small deformations, the total strain tensor of t
polymer blend is still given by Eq.~6!, but the material de-
rivative of e is generalized to the following equations:

S De

Dt D
i

5 1
2 ~¹v i1¹v i

†!, i 5A,B. ~19!

Taking material derivatives defined in Eqs.~12! and~13! on
both sides of Eq.~6!, and noticing that for small deformation
¹5]/]r .]/]a, Eq. ~19! is obtained. As will be seen in th
next section, Eqs.~16!, ~17!, and~19! are useful in the evalu
ation of the dissipation rate of the total free energy of
system.

Finally, it follows from the principle of mass conservatio
that Eq.~8! still holds. But in the present situation,r is the
total mass densityr5rA1rB , which is a constant@see Eq.
~1!#, andv is the fluid velocity given in Eq.~11!. Noticing
the fact that the system is incompressible (¹•v50), for a
polymer blend Eq.~8! can be written as

d

dtE d3rrQ~r ,t !5E d3rr
]Q

]t
. ~20!

Here, a boundary term has been ignored. Furthermore, s
the masses of both species are also conserved individu
one has the following equations:

d

dtE d3rr iQi~r ,t !5E d3rr i S D

Dt D
i

Qi~r ,t !, i 5A,B,

~21!
e

of

q.
-

e

ce
lly,

wherer iQi is any physical quantity contributed by thei spe-
cies. Note that only two of the three formulas for the tim
derivative of the volume integration are independent. In fa
summing up the two equations given in Eq.~21!, one obtains
Eq. ~8!.

B. Total free energy

We take into account three kinds of contributions to t
total free energy of the system: The kinetic energyK of
moving particles, the mixing free energyFm of the two spe-
cies, and the elastic free energyFe of polymers due to chain
deformation@8#. Thus, the total free energy of the system c
be written as

Ft5K1Fm~f!1Fe~f,e!. ~22!

Here, we have assumed that the mixing free energy i
function of f only, while the elastic free energy depends
bothf ande. The kinetic energy of the two kinds of movin
particles can be expressed as

K5E d3r ~ 1
2 rAvA

21 1
2 rBvB

2 !. ~23!

The mixing free energy can be written as

Fm~f!5E d3r f m~f!, ~24!

where f m(f) is the mixing free energy density, which, fo
example, can be chosen to be the Flory-Huggins form. O
derivation for the kinetic equations is independent of t
precise form of f m(f). In a similar way, the elastic free
energy can be expressed as

Fe~f,e!5E d3r f e~f,e!. ~25!

In the theory of linear elasticity, the elastic energy dens
due to chain deformation can be phenomenologically
pressed as@8,14#,

f e~f,e!5G~f! f e* ~e!, ~26!

where f e* (e)5e:e, and the coefficientG is the shear modu-
lus of the system, which, in general, depends on concen
tion only. Here, the notation (:) stands for the scalar prod
of second rank tensors. Note that consistently with ear
work of Doi and Onuki on the two-fluid approach@7#, the
straine is the total local strain of the blend. The domain
applicability of Eqs.~22!, ~25!, and~26! will be addressed a
the end of this subsection.

Since in a polymer blend both species contribute to
elastic energy, we propose the following intuitive form f
the shear modulus of the blend@15#

G5GB
~0!1@GA

~0!2GB
~0!#D~f!, ~27!

whereGi
(0) is the shear modulus of thei species before mix-

ing ~‘‘bare’’ shear modulus!, and D(f) is an interpolating
function describing the effect of blending. The condition th
G(f50)5GB

(0) and G(f51)5GA
(0) requires thatD(0)
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606 PRE 59TAO SUN, ANNA C. BALAZS, AND DAVID JASNOW
50 andD(1)51. Then the simplest form of the interpolatin
function would beD(f)5f, i.e., an ideal mixture approxi
mation. More generally we suppose

D~f!5f1D̃~f! ~28!

with D̃(0)5D̃(1)50. For use in Eq.~26!, it is convenient to
cast Eq.~27! into the form

G~f!5fGA~f!1~12f!GB~f!, ~29!

whereGi ,i 5A,B, are the ‘‘renormalized’’ shear moduli o
speciesA andB individually, which can be expressed as

GA~f!5GA
~0!F11

D̃~f!

f
G , ~30!

GB~f!5GB
~0!F12

D̃~f!

12f
G . ~31!

As we will see below, Eq.~29! is a reasonable approximatio
leading to a sensible result for the network velocity.

We return now to a discussion of the applicability of E
~22! with Eqs. ~25! and ~26!. The polymer blend is a vis
coelastic fluid~rather than a purely elastic system! so that at
sufficiently long times stresses relax. Yet one uses in E
~22! and ~26! ideas from solid elasticity. One expects th
Eq. ~22! describes the physics within the time scales l
than the relaxation time of the shear stress~usually referred
to as the ‘‘terminal relaxation time’’! @18#. The elastic part of
Eq. ~22! represents a constrained free energy appropriat
prescribed order parameter~concentration! and strain distri-
butions. As discussed elsewhere@14# such a constraint may
be physically meaningful only on sufficiently short tim
scales. Note that for polymer blends, in general, both spe
contribute to the strain tensor and that the individual rel
ation times of the two species can differ from one anothe
an asymmetric case. The relevant relaxation time is for
blend, and it will typically be controlled by the larger of th
two relaxation times, which guarantees that Eq.~26! is mean-
ingful. For time scales shorter than both relaxation tim
both species contribute to effective elastic energy. In a s
ation in which one of the species relaxes much more quic
than the other, at an intermediate time scale, it is expe
that only the species with the longer relaxation time contr
utes to the elastic free energy, while the second species~with
the shorter relaxation time! does not contribute to the elas
ticity, but rather contributes to the viscosity of the syste
This is precisely what happens in the case of a polymer
lution in which case the elastic stresses reside in the poly
network. Equation~26! is not meaningful on exceptionall
long time scales where the stress cannot be maintained.

C. Dissipation rate of total free energy

With the results presented in the previous two subs
tions, we are ready to discuss the dissipation rate of the t
free energy of the system. First, using the formula given
Eq. ~21!, the evaluation of the time derivative of the kinet
energy is straightforward, and the result can be expresse
.
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dK

dt
5E d3r H rAvA•S DvA

Dt D
A

1rBvB•S DvB

Dt D
B
J . ~32!

Next, since, in general, the mixing free energyf m(f) cannot
be simply divided into contributions by particlesA andB, it
is convenient to use Eq.~20! to calculate the dissipation rat
of the mixing free energy. Indeed, it is easy to obtain

dFm

dt
5E d3r

] f m~f!

]t
5E d3r

] f m~f!

]f

]f

]t
. ~33!

Making use of the continuity equation~16! and integrating
by parts, we have

dFm

dt
5E d3rvA•f¹

] f m~f!

]f
5E d3rvA•¹pm , ~34!

wherepm is the osmotic pressure associated with the mix
free energy, given by

pm5S f
]

]f
21D f m~f!. ~35!

Note that if the continuity equation~17! were used, a differ-
ent expression fordFm /dt would be obtained, but it will
give the same final kinetic equations when the condition¹
•v50 is taken into account.

Finally, we discuss the time derivative of the elastic fr
energy. In view of Eq.~29!, we can write

f e~f,e!5 f eA~f,e!1 f eB~f,e!, ~36!

wheref ei(f,e)5f iGi f e* (e),i 5A,B. Recall thate is the to-
tal local strain tensor. Using Eq.~21!, we have

dFe

dt
5E d3r H fF D

Dt
f21f eA~f,e!G

A

1~12f!F D

Dt
~12f!21f eB~f,e!G

B
J . ~37!

Using the chain rule, the material derivatives of the free
ergiesf eA(f,e) and f eB(f,e) can be expressed in terms o
the material derivatives off ande. Making use of Eqs.~16!,
~17!, and~19!, we obtain

dFe

dt
5E d3r H 2peA¹•vA2peB¹•vB

1~¹vA!:
] f eA

]e
1~¹vB!:

] f eB

]e J , ~38!

where pei , with i 5A,B, are the ‘‘elastic osmotic pres
sures,’’ given by

pei5S f i

]

]f i
21D f ei~f,e!, i 5A,B. ~39!

The stress tensor acting on the network can be define
@16#
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t5
] f e~f,e!

]e
. ~40!

In view of Eqs.~26! and ~36!, it is easy to check that

] f eA

]e
5f

GA

G
t, ~41!

] f eB

]e
5~12f!

GB

G
t. ~42!

Substituting Eqs.~41! and~42! into Eq. ~38!, the dissipation
rate of the elastic free energy can be written as

dFe

dt
5E d3r H vA•F¹peA2¹•f

GA

G
tG

1vB•F¹peA2¹•~12f!
GA

G
tG J , ~43!

after an integration by parts.
Combining Eqs.~32!, ~34!, and~43!, we obtain the dissi-

pation rate of the total free energy

dFt

dt
5E d3r H rAvA•S DvA

Dt D
A

1rBvB•S DvB

Dt D
B

1vA•F¹~pm1peA!2¹•f
GA

G
tG

1vB•F¹peB2¹•~12f!
GB

G
tG J . ~44!

It should be understood that the partial derivative]/]f is
carried out at fixede and]/]e is carried out at fixedf.

D. Network velocity

In this subsection, we discuss the network velocity~or
tube velocity in the reptation picture!. Substituting Eqs.~41!
and~42! into Eq.~38!, the dissipation rate for the elastic fre
energy can be expressed as

dFe

dt
5E d3r $2peA¹•vA2peB¹•vB

1G21@fGA¹vA1~12f!GB¹vB#:t%. ~45!

The last term in the above equation describes the time ra
change of the elastic energy purely due to the change of
strain tensor, so that the coefficient of the stress tensort can
be identified as the gradient of the network velocity~or tube
velocity in the reptation picture!,

¹v t5G21@fGA¹vA1~12f!GB¹vB#. ~46!

As we now show, this expression is in agreement with
previously obtained result using a microscopic approach

The network velocityv t has previously been estimate
from molecular theory@7,17# for a uniform system (f is
constant! with the result
of
he

a

v t5
zAvA1zBvB

zA1zB
. ~47!

Herez i ,i 5A,B, are effective friction coefficients given by

z i5n if i

Ni

Ni
e
z0 , i 5A,B, ~48!

wheren i is the number of chains of speciesi per unit vol-
ume,Ni

e is the average interval between two successive
tanglement points along one chain, andz0 is the phenomeno-
logical friction coefficient between the two species. On t
other hand, whenf is independent of space, Eq.~46! can be
solved with the result

v t5G21@fGAvA1~12f!GBvB#, ~49!

where an integrating constant has been determined as
from the condition thatv t5vA , whenf51. We may sup-
pose thatGA,B measure the densities of entanglement poin
i.e., Gi}Tf i /Ni

e @18#. Then Eq.~47! is recovered.

E. Kinetic equations

First we derive the equations for the two velocity fieldsvA
and vB . These equations can be obtained by means
Rayleigh’s variational principle@6,7#. Following Doi and
Onuki @6,7#, one can define a Rayleighian functional,

R5
1

2
W1

dFt

dt
, ~50!

whereFt is the total free energy of the system andW is the
dissipation function due to relative motion of the two pol
mers, which one assumes can be written as

W5E d3rc~r !z~vA2vB!2. ~51!

Herec is the monomer concentration of speciesA defined via
f5vmc with vm the monomer volume, andz is the friction
constant, which, in general, is a function off @9#. The
Rayleighian defined in Eq.~50! may be understood as th
total energy dissipation rate of the system. The variatio
principle states that the velocitiesvA andvB are determined
by the condition that they minimize the Rayleighian@6,7#.

Substituting Eqs.~44! and~51! into Eq.~50!, we have the
Rayleighian for the polymer blend,

R5E d3r H rAvA•S DvA

Dt D
A

1rBvB•S DvB

Dt D
B

1vA•F¹~pm1peA!2¹•f
GA

G
t G

1vB•F¹peB2¹•~12f!
GB

G
tG1 1

2 c~r !z~vA2vB!2J .

~52!

Since vA and vB are not independent variables due to t
incompressibility condition~18!, the functionalR must be
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minimized under this condition. The conditional minimiz
tion of the functionalR with respect tovA andvB leads to the
following equations:

rAS DvA

Dt D
A

52cz~vA2vB!2~¹p!f

2¹~pm1peA!1¹•f
GA

G
t, ~53!

rBS DvB

Dt D
B

5cz~vA2vB!2~12f!~¹p!

2¹peB1¹•~12f!
GB

G
t, ~54!

wherep is the Lagrange multiplier imposing the incompres
ibility condition. Equations~53! and~54! describe the motion
of polymersA andB in the system.

Solving Eqs.~53! and ~54! for vA and then substituting
the resulting expression into Eq.~16!, we can obtain the
diffusion equation forf. Clearly this cannot be done exact
and some approximation must be applied@7#. Since the ve-
locities relax much faster thanf, we can ignore the inertia
terms in Eqs.~53! and ~54! to obtain an explicit expressio
for vA . After eliminating thep terms, we can expressvA as

vA5v2
f~12f!2

cz H ¹
] f

]f
2a@~¹e!:t1¹•t#2b•tJ ,

~55!

wheref 5 f m1 f e and Eq.~11! has been used. In Eq.~55!, we
have introduced two parametersa(f) andb(f) for conve-
nience, which are given by

a5G21@GA2GB#, ~56!

b5f21¹f
GA

G
2~12f!21¹~12f!

GB

G
. ~57!

Substituting Eq.~55! into Eq. ~16!, we obtain

]f

]t
1v•¹f5vm¹•

f~12f!2

z

3H ¹
] f

]f
2a@~¹e!:t1¹•t#2b•tJ ,

~58!

where the incompressibility condition has been used. Thi
the diffusion equation forf.

It is convenient to describe the motion of the system us
the fluid velocityv and relative velocityu5vA2vB . From
Eqs.~53! and ~54!, it is easy to check that the kinetic equ
tions for v andu can be written, respectively, as

rS ]v
]t

1v•¹v1RvD52¹p2¹p1¹•t, ~59!
-

is

g

rfS ]u

]t
1u•¹u1RuD

52
cz

12f
u2fH ¹

] f

]f
2a@~¹e!:t1¹•t#2b•tJ ,

~60!

wherep5pm1peA1peB is the total osmotic pressure, an
Rv and Ru are couplings betweenv and u that can be ex-
pressed as

Rv5u¹•f~12f!u1f~12f!u•¹u, ~61!

Ru5u•¹~v2fu!1~v2fu!•¹u. ~62!

Equation~59! is the generalized Navier-Stokes equation
the fluid velocity.Rv is the correction due to coupling be
tween bulk flow and relative motion. Equation~60! describes
the relative motion between the two species.

The constitutive equation cannot be derived from t
above formalism, because so far no ordinary viscosity effe
have been included in the Rayleighian. We assume that
time evolution of the stress tensor is described by the up
convected Maxwell equation@7,10,19#

lF]s

]t
1v t•¹s2s•¹v t2~¹v t!

†
•sG1s5G~f!d,

~63!

wherel is the relaxation time,v t is the network velocity,
and the stress tensors is related tot throughs5Gd1t.
The network velocityv t has been used here because
stress acts on the polymer network@7,20#. Since in polymer
blends the fluctuations of concentration are small, and
~46! cannot be solved explicitly, we will use Eq.~49! as an
approximate expression for the network velocityv t in the
linear analysis. Using the expressions forvA and vB , we
have finally

v t5v2vma
f~12f!2

z H ¹
] f

]f
2a@~¹e!:t1¹•t#2b•tJ .

~64!

Equations~58!, ~59!, ~60!, and~63! describe the dynamics o
phase behavior of a polymer blend under shear flow. Sincu
appears only in Eqs.~59! and ~60!, and in most casesRv is
negligibly small@7#, one can ignore theRv term in Eq.~59!,
and then the model reduces to three equations. In the extr
case where theB component represents small molecule
GB;0,a.1/f,b.0, previous results for a polymer solutio
are recovered@8,10#. However, since features of solid ela
ticity have been used in the free energy expression, as
been discussed in the end of Sec. II B, taking this limit m
not be fully justifiable.

Note that although the structure of our set of kinetic eq
tions is similar to that given in Ref.@7#, some important
differences exist. First, the free energy densityf in Eq. ~58! is
the total free energy density, i.e.,f 5 f m1 f e , while in Eq.
~4.17! of Ref. @7#, f is the mixing free energy only. That is
we have taken into account the fact that, in general, the e
tic free energy can bef dependent@through the shear modu
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lus G(f)#. Second, two more terms@a(¹e):t# and (b•t)
are generated in Eq.~58!. The a(¹e):t term and the inclu-
sion of f e in the total free energy densityf enable the kinetic
equations to reduceformally to the solution case@see, how-
ever, the comment after Eq.~64!#.

III. LINEAR ANALYSIS

Equations~58!, ~59!, and~63! are nonlinear equations, s
that a complete analysis is difficult. However, to study t
effect of viscoelasticity on the phase boundary under shea
is sufficient to carry out a linear analysis similar to that d
veloped in Refs.@5,8#. In this formalism, we first iteratively
solve Eq.~63! for s to the ‘‘second-order fluid’’ level from
which the stress tensors can be expressed in terms off and
v @19#. Then we substitute this constitutive relation f
s(v,f) into Eqs.~58! and ~59!. Setting

f5f01f1 , ~65!

v5v01v1 , ~66!

wheref0 andv0 are the overall average volume fraction a
the fluid velocity, andf1 and v1 are small deviations, we
can solve the equations to linear order inf1 andv1 . In the
case of shear flow,v05Syex , whereS is the shear rate an
ex is the unit vector in thex direction. The expansion param
eter is essentially the combinationSl, which limits the ap-
proximations to the regime of weak shear.

A. Iterations for s and e

We first solve the Maxwell equation iteratively@19#.
Since our aim is to see how viscoelasticity changes the
bility line for phase separation, it is sufficient to obtain
solution for s in the long wavelength limit. It is easy to
check by ‘‘power counting’’ thatf1 and¹v1 are the leading
order terms, and thenv2v t;¹f1¹2v are higher order
terms. Therefore, we can replacev t by v in the Maxwell
equation for the present purpose. Furthermore, sincev ands
relax much faster thanf, we may ignore the inertia term
@5,8# and obtain

l@2s•¹v2~¹v !†
•s#1s5G~f!d. ~67!

Directly iterating to the ‘‘second-order fluid’’~i.e., to
O(u¹vu2), we obtain

s5Gd12hD12hl~D•¹v1¹v†
•D !, ~68!

whereh5lG is the viscosity andD is the gradient tenso
given by 2D5¹v1¹v†. Note that, at this order, only lead
ing order non-Newtonian terms are included. Finally,
later convenience, we write down the expression for
strain tensore,

e5lD1l2~D•¹v1¹v†
•D !. ~69!

Now we have expresseds in terms off and v. Our next
task is to eliminates ande using Eqs.~68! and~69! in Eqs.
~58! and ~59! and carry out a linear analysis for the rema
ing equations.
it
-

a-

r
e

B. Navier-Stokes equation

Now we discuss the linear analysis of the Navier-Stok
equation. In a similar spirit to the treatment of the Maxw
equation, we ignore the inertia terms since fluid velocit
relax much faster thanf @5,8#. Then the equation forv be-
comes simply

¹p1¹p2¹•t50. ~70!

We next find expressions for¹p and¹•t linear in f1 and
v1 . For later convenience, we introduce two parameterg
and j through G(f)5kBTg(f) and h(f)5kBTj(f). It
follows from the definition thatp5p(f,e)5p̃(f,v), and
therefore we have

¹p5S ]p̃

]f
D

0

¹f11~¹v1!•S ]p̃

]v D
0

, ~71!

where the subscript ‘‘0’’ indicates that the derivatives a
evaluated atf0 andv0 . In view of Eq.~68!, we can express
¹•t in a similar way as

¹•t5kBT¹•@2jD12jl~D•¹v1¹v†
•D !#. ~72!

Substituting Eqs.~65! and ~66! into Eq. ~72! and keeping
terms only linear inf1 andv1 , we have

¹•t5kBT@j0¹2v11Sj08~ex]yf11ey]xf1!1O~S2,Sv !#,
~73!

whereei with i 5x,y,z are unit vectors. Here the subscript
means that the values are evaluated atf5f0 , and primes
indicatef differentiation. To obtain the shift in the spinoda
~stability line! to leading order in the shear rate@O(Sl)2#,
the O(S2,Sv) terms can be ignored at this stage.

Substituting Eqs.~71! and~73! into Eq.~70! and eliminat-
ing p via ¹•v50, we can solvev to orderO(S) in Fourier
space with the result

v1x~k!52 iS
j08

j0

ky

k2
~2k̂x

221!f1~k!, ~74!

v1y~k!52 iS
j08

j0

kx

k2
~2k̂y

221!f1~k!, ~75!

v1z~k!522iS
j08

j0

kxkykz

k4
f1~k!, ~76!

wherek̂i5ki /k. As we see, to this order, the solution forv is
independent of the precise form ofp. Note that the expres
sions given in Eqs.~74!–~76! are the same as those for pol
mer solutions@8,10#. That is, to leading order, the linearf
2v relations are the same for both polymer solutions a
blends.

C. Shift in the stability line

We now discuss the linearization of the diffusion equati
~58!, from which the effect of viscoelasticity on the pha
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boundary can be studied. We choose the Flory-Huggins f
for the mixing free energy@18#,

f m~f!5kBTF f

NA
lnf1

12f

NB
ln~12f!1xf~12f!G ,

~77!

wherex is the Flory-Huggins interaction parameter, and u
Eq. ~26! for the elastic free energy. Substituting Eqs.~65!
and~66! into Eq.~58! and making use of Eqs.~74!–~76!, we
can obtain the following linearized diffusion equation
Fourier space,

S ]

]t
2Skx

]

]ky
Df1~k!52vm

kBT

z
f0~12f0!2k2

3@C01C1~ k̂x ,k̂y!#f1~k!.

~78!

HereC0 is an isotropic constant given by

C0~f0!5
1

NAf0
1

1

NB~12f0!
22x1k~f0!~Sl0!2,

~79!

wherel05j0 /g0 is the average relaxation time and the c
efficient k is given by

k~f0!5
1

2
g092

g08
2

g0
1a0g08 . ~80!

Note thatk depends only on the shear modulus of the ble
The second term on the right-hand side of Eq.~78! produces
an anisotropic modification of the scattering function@5# and
is given by

C1522Sl0~A01B0!k̂xk̂y

1~Sl!2@4~C022B0!~ k̂xk̂y!2

22~A01B02D0!k̂x
21~C02B0!k̂z

2#, ~81!

whereA0, B0, C0 , andD0 are the constants

A05a08g01f0
21gA01~12f0!21gB0 , ~82!

B05a0g0

j08

j0
, ~83!

C05g08
j08

j0
, ~84!

D05a0g08 . ~85!
tt.
.

c-
m

e

-

.

The zero-shear spinodal line~linear stability line! in the x
2f parameter space is determined by the first three term
C0 @18#. The last term is the modification of the stability lin
arising from the dynamics of viscoelasticity; this shift
O(S2), whereS is the shear rate.

The direction of the stability line shift is dependent on t
sign of k, which in turn depends on the details of the inte
polating functionD(f). Whenk.0, the effective value ofx
is reduced, and stability line in thex2f plane is shifted to
larger values ofx ~lower temperatures!. On the other hand
whenk,0, the stability line is shifted in the opposite ma
ner. Since, in general, the shear moduli for the individu
speciesA and B involve material parameters, the details
the shift in the stability line cannot be determined explicit
In highly symmetric situations, the magnitude of any sh
might be small, owing to the small value of the coefficie
@GA

(0)2GB
(0)#. However, the shift in the linear stability

should, according to the present analysis, correlate with m
surements of the interpolating function for the blend,D(f).
If D(f)5f,k50 and there is no shift in stability.

IV. CONCLUSION

We have applied the general two-fluid approach of D
and Onuki@7# to establish model equations for the study
the phase behavior, or more precisely, linear stability, o
polymer blend in the presence of shear flow. A phenome
logical form of the shear modulus for a polymer blend
used, which can be experimentally determined. The mod
cations used here allow the kinetic equations to reducefor-
mally to the solution case in the limit in which one of th
species becomes a small~solvent! molecule. However, since
features of solid elasticity have been used, taking the li
remains to be fully justified. Linear analysis of the mod
indicates that the equilibrium stability line is shifted by th
effect of viscoelasticity when the dependence of the sh
modulus of the blend on the volume fraction of one of t
species is nonlinear. The direction of the shift is depend
on the material properties of the species and on the rang
volume fraction, so that the nature of the temperature shi
more complicated than that in polymer solutions@8,10#.
Physically, this feature of polymer blends can be attribu
to the fact that both species have contributions to the ela
free energy.
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