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We study the dynamics of the phase behavior of a polymer blend in the presence of shear flow. By adopting
a two-fluid picture and using a generalization of the concept of material derivative, we construct kinetic
equations that describe the phase behavior of polymer blends in the presence of external flow. A phenomeno-
logical form for the shear modulus for the blend is proposed. The study indicates that a nonlinear dependence
of the shear modulus of the blend on the volume fraction of one of the species is crucial for a shift in the
stability line to be induced by shear flop51063-651X%99)12501-7

PACS numbedis): 82.70-y

I. INTRODUCTION scribing the dynamics of phase separation of a polymer blend
[7]. However, to our knowledge, the full consequences of the
The dynamics of the phase behavior in polymer mixturesquations have not been explored. Moreover, the original
under external flow fields has aroused great interest over th@pproach employed in the ground-breaking work of Doi and
last two decadefl—10]. The motivation for these studies is Onuki prevents these kinetic equations from reducing to the
twofold. First, the effect of viscoelasticity on the phase be-Polymer-solution case. Here, we present an expanded deriva-
havior of polymer mixtures can be directly detected for somdion, in which the difference between the Lagrangian and
macroscopic flows. Secondly, many industrial processesIgulerlan deSCl‘I.ptIOHS has been taken into account. Using a
such as extrusion and painting processes, generate shear figffenemenological form for the shear modulus of a polymer
fields in polymer solutions and melts. In order to gain further lend, we can carry out a linear stability analysis for the

insight into nhonequilibrium phase transitions and to optimizemOOIeI and find that the equilibrium spinodal line can be

these industrial processes, one must understand the phassbe'fted in a complicated fashion by the shear flow. The pur-

behavior of polymer mixtures in the presence of a flow field pase of this paper is to report on these studies and describe

Experimentally, a number of groups have reported that thléhe relevant techniques in detail.
P Y, group P The system consists of two kinds of polymers with differ-

hase behavior of polymer mixtures can be dramaticall L
Ehanged by macrogcoypic flow fields. In particular foryent degrees of polymerizatioN, andNg . The volume frac-

polymer-solvent mixtures in the presence of a shear flow (;Elion of polymerA at space-time pointr(t) is denoted by
" da(r,t)=¢(r,t), and the volume fraction of polymes is

greatly enhanced turbidity has been observed at temperaturg A .
much higher than the equilibrium critical temperat{te-3]. en ¢g(r,t)=1 d;(r,t)._ We make the assumption that
To study the mechanism of the observed phenomenon imonomers of both species have the same specific volume,
polymer solutions, a number of theoretical efforts have beeWhICh can be expressed g&-8|

made[5,8-10, and it is now understood that a nonlinear

concentration dependence of the shear modulus is crucial for Pa(rt) _ pe(r,t) =p 1)

an upward shift of the phase separation temperafliég d(r,t) 1—g(r,t) ™

The temperature shift is proportional to the square of the

shear strength in the regime of weak shiggd0]. wherep, and pg are the respective mass densities of poly-

Although some experiments have been carried out fomersA and B and p is the total mass density, which is a
polymer blends under external flojd], theoretically, one constant. This assumption is consistent with the incompress-
knows very little about the phase behavior of this systemibility of the system. In the two-fluid picturg5—9], the two
Doi and Onuki first discussed the Langevin equations despecies are moving with different velocities, so that both
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bulk flow of the fluid and mutual diffusion of the two spe- whereAr=r—a, and the dagger superscript stands for the
cies, accompanied by chain deformation, take place simultaransposition of tensors. Notice thais the total local strain
neously. Our task is to study the effect of flow and chainof the composite material. This point will be discussed fur-
deformation on the dynamics of the phase behavior of theher, below. The material derivative of the strain tensor is
system. given by[11],

The paper is organized as follows. In Sec. Il, we first
discuss appropriate material derivatives and then derive the De | T
kinetic equations for the fluid velocity and volume fraction Dr_2(VutVul). (@)
¢. In Sec. lll, we perform a linear stability analysis of the
model, from which the effect of flow on the domain of linear Finally, the principle of conservation of mass leads directly
stability can be obtained. Finally, our conclusions are brieflyto the following well-known formuld11-13
summarized in Sec. IV.

d D
Il. MODEL §f d?’fp(f,t)Q(r,t):fdgrp(r,t)aQ(r,t), (8)

A polymer blend is a viscoelastic system, sharing feature§vhere Q(r,t) is any physical quantity per unit mass and
of an elastic continuum and a viscous fluid. The system is N ; ;
elastic, but it only has a “faded” memory. The sthem is p(r.t) is the mass Cjensny of the material. :

. ' . . s We now generalize the above concepts to the two-fluid
viscous, but it can bear deformation on some time scales. ';&

derive the kineti tions for h tem. one must icture of polymer blends. As usual, we choose the unde-
erive the kKinetic equations for such a systém, oné must cag, o siate as the reference configuration, in which each
on familiar methods in studies of deformable media, as wel

as techniques for viscous fluids _aterial particle is identifie_d by its Lagrangian_ coordinates _

: Since in the present situation there are two kinds of material
particles moving with different velocities in the system, one
should distinguish the Lagrangian coordinates for the two

In continuum mechanics, one uses both Lagrangian angpecies. We denote the Lagrangian coordinates of the par-
Eulerian coordinates to describe the motion of a materiaticles of polymersA andB by a, andag, respectively. Then
element{11,12. The Lagrangian coordinates, which can beEq. (4) can be generalized as
denoted bya={a;},i=1,2,3, are used to label the material

A. Material derivatives

elements or “particles” in a reference configurati@rsually _ ﬂ 9

the undeformed statewhile the Eulerian coordinates, de- ATt a ’

noted byr ={r;},i=1,2,3, are the coordinates of the particles A

in the current configuration. The two coordinates are related P

through the following equations: V= (a_;) ) (10)
r=r(a,t), 2 %

The physical meaning of Eq€9) and (10) is as follows. At
each space-time point in the current configuration, there are

The velocity of the material element that is currently locatedWo Velocities,va(r,t) andvg(r,t), which will be acquired

at the pointr is defined as the time rate of change of its Py the material particles passing through this point, depend-
position, ing on the type of material particles. That is, particles of

polymer A pass the point with velocity o(r,t), while par-
or

a=a(r,t). ©)

ticles of polymerB pass the same point with velocity
E (4) vg(r,t). The fluid velocity(average velocityof this point is
given by

a

where the subscrip is used to emphasize the fact that the
derivative is to be evaluated for a particular material element v(r,)=g¢(r,hoa(r,t) +[1=(r,H)Jue(r,t). (11)

the Lagrangian coordinates of which aeThis is the usual . )
material derivative. In the Eulerian description, the materiaf\aturally, corresponding to Eqe9) and(10), we may intro-

derivative of any property pertaining to the particle labelegduce two kinds of material derivatives in the system,
by the Lagrangian coordinateis given by

D d
D 7y ©) (D_t)[wv”v’ 2
Dt at UV
. . . " . . D d
wherev is the velocity of the particla at positionr, given in (—) =—+vg-V. (13
Eq. (4). For small deformations in which the Lagrangian Dt/g

strain tensor and the Eulerian strain tensor have the same ] . o
form, the strain tensok is the symmetric part of the dis- If we focus on particles of polymek, the material derivative
placement gradient tensor, is given by Eq.(12); similarly, the material derivative for
speciesB is given by Eq.(13). The essential point is that any
e=1[V(Ar)+V(ANT], (6) difference between, ,vg, and the center of mass velocity is
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due to mutual diffusion. A constitutive relation is required to wherep;Q; is any physical quantity contributed by thepe-

fix the diffusion flux or, equivalentlyy ,—vg. We will re-  cies. Note that only two of the three formulas for the time

turn to this point later. derivative of the volume integration are independent. In fact,
It is easy to evaluate the two material derivatives for somesumming up the two equations given in Eg1), one obtains

basic physical quantities, such as the volume fracthoand  Eg. (8).

strain tensofe. First, from the continuity equations for both

species B. Total free energy

We take into account three kinds of contributions to the
+V-pa(r,thua(r,t)=0, (14)  total free energy of the system: The kinetic enetgyof
moving particles, the mixing free energy, of the two spe-
cies, and the elastic free enerfy of polymers due to chain

dpg(r,t i
pe(r,t) £V p(r)ug(r ) =0, (15 deformatior{8]. Thus, the total free energy of the system can

(?pA(I’ ,t)
ot

at be written as
we can obtain the expressions for the material derivatives of Fi=K+Fn(é)tFe(g,€). (22
the volume fraction . .
Here, we have assumed that the mixing free energy is a
D(r,t) function of ¢ only, while the elastic free energy depends on
[ Dt =—¢(r,t)V-va(r,t), (16) both ¢ ande. The kinetic energy of the two kinds of moving
A particles can be expressed as
Do(r,t)
{T =[1-(r,t)]V-vg(r,t), (17 K:f d*r (Zpavat 3pevB)- (23
B

where Eq.(1) has been used. Note that, augmented by Ethe mixing free energy can be written as

(1), the continuity equations lead directly to the incompress-

ibility condition Fm(d)):f d3rf (@), (29
Vo=V -¢vp+V-(1-$)vg=0. (18) wheref (¢) is the mixing free energy density, which, for

example, can be chosen to be the Flory-Huggins form. Our

derivation for the kinetic equations is independent of the

precise form off ,(¢). In a similar way, the elastic free

energy can be expressed as

Next, for small deformations, the total strain tensor of the
polymer blend is still given by Eq6), but the material de-
rivative of e is generalized to the following equations:

De N N .
Dt _=§(Vvi+Vvi), i=A,B. (19 Fe(d’af):j d3l’fe(¢),€). (25)

Taking material derivatives defined in Eq42) and(13) on  In the theor_y of linear _elasticity, the elastic energy density
both sides of Eq(6), and noticing that for small deformation, due to chain deformation can be phenomenologically ex-
V=dlor=alda, Eq.(19) is obtained. As will be seen in the Pressed af8,14],

next section, Eq416), (17), and(19) are useful in the evalu-

ation of the digsipation rate of the total free energy of the fo(d,€)=G(#)fz (e), (26)
system.

Finally, it follows from the principle of mass conservation
that Eq.(8) still holds. But in the present situatiop, is the
total mass densitp=p,+ pg, Which is a constaritsee Eq.
(1)], andwv is the fluid velocity given in Eq(11). Noticing
the fact that the system is incompressibé- ( =0), for a
polymer blend Eq(8) can be written as

wheref} (€)= €: €, and the coefficienG is the shear modu-
lus of the system, which, in general, depends on concentra-
tion only. Here, the notation (:) stands for the scalar product
of second rank tensors. Note that consistently with earlier
work of Doi and Onuki on the two-fluid approadf], the
strain e is the total local strain of the blend. The domain of
applicability of Eqs.(22), (25), and(26) will be addressed at

d 9Q the end of this subsection.

—j d3rpQ(r,t)=j dirp—-. (20) Since in a polymer blend both species contribute to the
dt Jt elastic energy, we propose the following intuitive form for

the shear modulus of the bleptl5
Here, a boundary term has been ignored. Furthermore, since heiS}

the masses of both species are also conserved individually, G=GL+[GL-GP]A(¢), (27)
one has the following equations:

whereG(? is the shear modulus of thespecies before mix-

d D H b " B . .
— | dBPrpQirt :J d3 (_) (rt), i=AB, ing (_bare sh_egr moduluy and A(d))_ is an mterpo_lgtmg
dtf "piQi(r.Y) o Dt iQ,(r ) function describing the effect of blending. The condition that

21) G(¢=0)=GY and G(¢=1)=GY requires thatA(0)
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=0 andA(1)=1. Then the simplest form of the interpolating dK Dua
function would beA(¢)= ¢, i.e., an ideal mixture approxi- at j d®r{ pava Dt
mation. More generally we suppose

D
B

~ Next, since, in general, the mixing free eneffgy( ) cannot
A(p)=d+A(9) (280 pe simply divided into contributions by particlésandB, it
5 _ is convenient to use E@20) to calculate the dissipation rate
with A(0)=A(1)=0. For use in Eq(26), it is convenient to  of the mixing free energy. Indeed, it is easy to obtain
cast Eq.(27) into the form

m I m(P) () d¢
—=fd3r o =fd3r

06 ot (33

G(¢)=¢Ga(¢)+(1—-¢)Gp( ), (29

whereG; ,i=A,B, are the “renormalized” shear moduli of Making use of the continuity equatiofi6) and integrating
speciesA andB individually, which can be expressed as by parts, we have

- dF,, of (P)
A(qsd))}’ (30) —=fd3wA~¢v N =fd3rvA‘Vwm, (39

Gal(¢)=GY| 1+ dt i

wherer,, is the osmotic pressure associated with the mixing

GB(¢)=G(BO>{1_ i(__‘iz; . (31) free energy, given by
As we will see below, Eq(29) is a reasonable approximation ( ¢£ - 1) fn(d). (35)

leading to a sensible result for the network velocity.
We return now to a discussion of the applicability of Eq. Note that if the continuity equatiofl7) were used, a differ-

(22) with Egs. (25 and (26). The polymer blend is a vis- ent expression fodF,,/dt would be obtained, but it will

coelastic fluid(rather than a purely elastic systeso that at  give the same final kinetic equations when the condi¥on

sufficiently long times stresses relax. Yet one uses in Eqs.v =0 is taken into account.

(22) and (26) ideas from solid elasticity. One expects that  Finally, we discuss the time derivative of the elastic free

Eq. (22) describes the physics within the time scales lessnergy. In view of Eq(29), we can write

than the relaxation time of the shear stréssually referred

to as the “terminal relaxation time'T18]. The elastic part of fo(p,€)=Topn(d,€)+ (D, e€), (39

Eq. (22) represents a constrained free energy appropriate to

prescribed order paramet@oncentrationand strain distri-  wherefq (¢, €)= ¢;Gf% (€),i =A,B. Recall thate is the to-

butions. As discussed elsewhdfiet] such a constraint may tal local strain tensor. Using ER21), we have

be physically meaningful only on sufficiently short time

scales. Note that for polymer blends, in general, both species dFe 3 D _,

contribute to the strain tensor and that the individual relax- W:f d°ry ¢ E‘f’ fea(¢€)

ation times of the two species can differ from one another in A

an asymmetric case. The relevant relaxation time is for the D

blend, and it will typically be controlled by the larger of the +(1- d’)[a(l— ¢) Mep(p€)

two relaxation times, which guarantees that &%) is mean-

ingful. For time scales shorter than both relaxation times

both species contribute to effective elastic energy. In a SltuUsmg the chain rule, the material derivatives of the free en-

ation in which one of the species relaxes much more quickl rg're;]saft?r(ig’l 5@%2%32% (g;;n%an fﬂzzﬁprﬁzze; :En t;;rg)s of
than the other, at an intermediate time scale, it is expecte € 9 4s.19),

that only the species with the longer relaxation time contrib- 7, and(19), we obtain
utes to the elastic free energy, while the second spéwidis dE
the shorter relaxation timedoes not contribute to the elas- e:f d3r( —meaV - va— TV Ug
ticity, but rather contributes to the viscosity of the system. dt

This is precisely what happens in the case of a polymer so- ]

] . (37
B

lution in which case the elastic stresses reside in the polymer
network. Equation(26) is not meaningful on exceptionally
long time scales where the stress cannot be maintained.

(38)

where ., with i=A,B, are the "elastic osmotic pres-
sures,” given by
C. Dissipation rate of total free energy
With the results presented in the previous two subsec- _ 24
tions, we are ready to discuss the dissipation rate of the total Tei=| #i o
free energy of the system. First, using the formula given in
Eq. (21, the evaluation of the time derivative of the kinetic The stress tensor acting on the network can be defined as
energy is straightforward, and the result can be expressed §&6|

fei(¢.€), 1=AB. (39
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8fe(¢,e)
T— — .

Je (40)

In view of Egs.(26) and(36), it is easy to check that

of G
aZA: EAT’ “4D
e —(1—¢)ET- (42)

Substituting Eqs(41) and(42) into Eq.(38), the dissipation
rate of the elastic free energy can be written as

[ o

Ga
VreaV-(1=¢) 5 7

dFe
dt

Ga
Vﬂ'eA—V-q’)ET

+UB'

] ) (43

after an integration by parts.
Combining Eqgs(32), (34), and(43), we obtain the dissi-
pation rate of the total free energy

D
o5

dF, ) N (
Nt pPBUB"
Dt A

dat

Dv B)
Dt B

Ga
V(?Tm-i"?TeA)—V'(f)ET

] |

It should be understood that the partial derivati/@¢ is
carried out at fixede and g/ de is carried out at fixeds.

+UA'

Gg
VWeB—V~(1—¢)ET

+ug: (44

D. Network velocity

In this subsection, we discuss the network velogity
tube velocity in the reptation pictureSubstituting Eqs(41)
and(42) into Eq.(38), the dissipation rate for the elastic free
energy can be expressed as

dFe 3
dt :f d r{_WeAV'UA_’?TeBV'UB

+G Y ¢pGpVua+(1—¢)GgVugl:7}. (45

The last term in the above equation describes the time rate of Do
change of the elastic energy purely due to the change of theR= d3f| PAUA" (ﬁ

strain tensor, so that the coefficient of the stress tensan
be identified as the gradient of the network velocity tube
velocity in the reptation pictuse

Vui=G Y ¢GaVua+(1—)GgVugl. (46)

As we now show, this expression is in agreement with a

previously obtained result using a microscopic approach.

The network velocityv; has previously been estimated
from molecular theory[7,17] for a uniform system & is
constank with the result
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. _{avatipup
O latis

Here ¢, ,i=A,B, are effective friction coefficients given by

(47)

N ,
= . s — , I
Vi Ne§0

g =A,B, (48

where v; is the number of chains of specieper unit vol-
ume,N{ is the average interval between two successive en-
tanglement points along one chain, afds the phenomeno-
logical friction coefficient between the two species. On the
other hand, whem is independent of space, E4.6) can be
solved with the result

vi=G Y ¢pGpava+(1—¢)Gpugl,

where an integrating constant has been determined as zero
from the condition thav,=v,, when¢=1. We may sup-
pose thalG, g measure the densities of entanglement points,
i.e., G T¢; /Nf [18]. Then Eq.(47) is recovered.

(49

E. Kinetic equations

First we derive the equations for the two velocity fielgs
and vg. These equations can be obtained by means of
Rayleigh’s variational principlg6,7]. Following Doi and
Onuki[6,7], one can define a Rayleighian functional,

1

> -

R=aW* 4t

(50

whereF, is the total free energy of the system ants the
dissipation function due to relative motion of the two poly-
mers, which one assumes can be written as

W=f d3rc(r)é(va—vg)?. (51)
Herec is the monomer concentration of speckedefined via
d=v,,Cc with v, the monomer volume, andis the friction
constant, which, in general, is a function @f [9]. The
Rayleighian defined in Eq50) may be understood as the
total energy dissipation rate of the system. The variational
principle states that the velocities, andvg are determined
by the condition that they minimize the Rayleighigh7].

Substituting Eqs(44) and(51) into Eq. (50), we have the
Rayleighian for the polymer blend,

n (DUB)
PBUB | T~y
A Dt B

Ga
+ua V(qu+7TeA)—V-¢E7'

Gg
Vreg—V-(1- (b)ET

+UB'

+ %C(r)é(vA—vB)z} :

(52

Sincev, andvg are not independent variables due to the
incompressibility condition(18), the functionalR must be
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minimized under this condition. The conditional minimiza-
tion of the functionaR with respect tw 5 andv g leads to the
following equations:

D
pA(ﬁ):—cz(vA—vB)—(pr
Ga
—V(’Tl'm+7TeA)+V'¢ET, (53
D
pB(D—Uf) =cl(va=ve) =~ (1= $)(Vp)
B
Ge
Vet V-(1-¢) 27, (54)

wherep is the Lagrange multiplier imposing the incompress-

ibility condition. Equationg53) and(54) describe the motion
of polymersA andB in the system.

Solving Egs.(53) and (54) for v, and then substituting
the resulting expression into E@l6), we can obtain the
diffusion equation forp. Clearly this cannot be done exactly
and some approximation must be appl[&dl Since the ve-
locities relax much faster tha#t, we can ignore the inertia
terms in Egs(53) and (54) to obtain an explicit expression
for v, . After eliminating thep terms, we can express, as

oo
i

P(1— $)?
¢

VA=V~ a[(Ve):T+V-T]—B-T],

(55)
wheref =f,+ f, and Eq.(11) has been used. In E5), we

have introduced two parametai$ ¢) and B(¢) for conve-
nience, which are given by

a:Gil[GA_GB], (56)
G G
B=¢ Voo -(1-¢) Vi-¢) 2. ()
Substituting Eq(55) into Eq. (16), we obtain
32
%‘FU-V(I):U,“V-@
of .
X Vﬁ—a[(VG).T'FV'T]—ﬂ'T ,
(58)

where the incompressibility condition has been used. This i$

the diffusion equation foeb.
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po E+u~Vu+Ru
3 cl of )
——mu—qﬁ Vﬁ—a[(V€).T+V'T]—B'T ,

(60)

where = m,+ m.pt+ 7eg IS the total osmotic pressure, and
R, and R, are couplings between and u that can be ex-
pressed as

R,=uV-¢(l—¢)u+ d(l—¢)u-Vu, (62

R,=u-V(v—¢u)+(v—¢u)-Vu. (62
Equation(59) is the generalized Navier-Stokes equation for
the fluid velocity.R, is the correction due to coupling be-
tween bulk flow and relative motion. Equati¢d0) describes
the relative motion between the two species.

The constitutive equation cannot be derived from the
above formalism, because so far no ordinary viscosity effects
have been included in the Rayleighian. We assume that the
time evolution of the stress tensor is described by the upper
convected Maxwell equatiofv,10,19

Jdo
—+v,-Vo—o-Vo,— (Vo) T o|+0=G(¢)4,

)\&t

(63

where \ is the relaxation timey, is the network velocity,
and the stress tenser is related tor througho=Gd+ 7.

The network velocityv; has been used here because the
stress acts on the polymer netwdik20|. Since in polymer
blends the fluctuations of concentration are small, and Eqg.
(46) cannot be solved explicitly, we will use E¢19) as an
approximate expression for the network velocityin the
linear analysis. Using the expressions fof andvg, we
have finally

$(1-¢)%[ _ of
T V__

7% C([(VG):T+V'T]—,8'T].

(64)

V=V~ Uma

Equationg58), (59), (60), and(63) describe the dynamics of
phase behavior of a polymer blend under shear flow. Since
appears only in Eqg59) and (60), and in most caseR, is
negligibly small[7], one can ignore thR, term in Eq.(59),

and then the model reduces to three equations. In the extreme
case where thd8 component represents small molecules,
Gg~0,a=1/¢,B=0, previous results for a polymer solution
are recovered8,10]. However, since features of solid elas-
ticity have been used in the free energy expression, as has
een discussed in the end of Sec. Il B, taking this limit may
not be fully justifiable.

It is convenient to describe the motion of the system Using  \ote that although the structure of our set of kinetic equa-

the fluid velocityv and relative velocitju=v—vg. From
Egs.(53) and(54), it is easy to check that the kinetic equa-
tions forv andu can be written, respectively, as

ov
p E—l—v-VzH—RU =—Vp—-V#+V.r (59

tions is similar to that given in Ref.7], some important
differences exist. First, the free energy densityEq. (58) is

the total free energy density, i.€.=f,+f., while in Eq.
(4.17) of Ref.[7], f is the mixing free energy only. That is,
we have taken into account the fact that, in general, the elas-
tic free energy can bé dependenfthrough the shear modu-
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lus G(¢)]. Second, two more termsx(Ve): 7] and (B- 7) B. Navier-Stokes equation

are generated in Eq58). The a(Ve): 7 term and the inclu- Now we discuss the linear analysis of the Navier-Stokes
sion off, in the total free energy densifyenable the kinetic  oquation. In a similar spirit to the treatment of the Maxwell
equations to reductermally to the solution casgsee, how-  equation, we ignore the inertia terms since fluid velocities
ever, the comment after E¢G4)]. relax much faster thag [5,8]. Then the equation foy be-
comes simply
IIl. LINEAR ANALYSIS
Vp+Va—V-7r=0. (70)
Equations(58), (59), and(63) are nonlinear equations, so

that a complete analysis is difficult. However, to study thewe next find expressions f&f 7 andV - 7 linear in ¢, and
effect of viscoelasticity on the phase boundary under shear, i, . For later convenience, we introduce two parametgers
is sufficient to carry out a linear analysis similar to that de-and ¢ through G(¢)=kgTg(¢) and 7(p)=kgTE(). It

veloped in Refs[5,8]. In this formalism, we first iteratively follows from the definition thatr= (¢ 6):'7}(4, v), and
solve Eq.(63) for o to the “second-order fluid” level from i arefore we have ' o

which the stress tenser can be expressed in terms ¢fand
v [19]. Then we substitute this constitutive relation for
o(v, ) into Egs.(58) and(59). Setting Vw:(

¢= ot ¢1, (65) ) . —
where the subscript “0” indicates that the derivatives are
v=vo+v1, (66)  evaluated atpy anduv,. In view of Eqg.(68), we can express
V. 7in a similar way as

Jm

) V¢1+(V01)'<5_w) ; (71)
o 0 v/,

whereg¢, andv are the overall average volume fraction and
the fluid velocity, and¢, andv, are small deviations, we
can solve the equations to linear ordergip andv 4. In the
case of shear flowyy=Syg, whereSis the shear rate and
e, is the unit vector in the direction. The expansion param-
eter is essentially the combinati@®\, which limits the ap-
proximations to the regime of weak shear.

V.r=kgTV-[2éD+2EN(D-Vo+Vo'-D)]. (72

Substituting Eqs(65) and (66) into Eq. (72) and keeping
terms only linear ing, andv,, we have

V- 1=kgT[ £V 201+ SE(8dy 1 +eydypr) +O(S%, Sv) ],
(73

A. Iterations for o and e wheree, with i =x,y,z are unit vectors. Here the subscript 0

We first solve the Maxwell equation iterativefyl9]. ~ Means that the values are evaluatedpat 4o, and primes
Since our aim is to see how viscoelasticity changes the stdndicate¢ differentiation. To obtain the shift in the spinodal
bility line for phase separation, it is sufficient to obtain a (Stability line) to leading order in the shear rai®(Sh)?],
solution for o in the long wavelength limit. It is easy to the O(S?,Sv) terms can be ignored at this stage.
check by “power counting” thats; andVu, are the leading ~ Substituting Eqs(71) and(73) into Eq.(70) and eliminat-
order terms, and then—v,~Vé+V2 are higher order N9 P V|a_Vov=O, we can solvey to orderO(S) in Fourier
terms. Therefore, we can replaog by v in the Maxwell ~ SPace with the result
equation for the present purpose. Furthermore, singad o

relax much faster thawp, we may ignore the inertia terms _ 5_6 & 02

(5.8] and obtain oK)= =iSg 22K 1) da(k), (74

N—0-Vo— (Vo) o]+ o=G(¢)é. (67) ¢ K

—_ig20 X of2_

Directly iterating to the “second-order fluid”(i.e., to vay(k)= 'Sgo k2(2ky 1) ¢a(k), (75)

O(|Vv]|?), we obtain

- : t. 6o kekyk

g Gé+277D+277)\(D Vuv+Vu D), (68) vlz(k):_zlsg_z XkZ zd’l(k)v (76)

where n=\G is the viscosity and is the gradient tensor
given by D=Vuv+Vo'. Note that, at this order, only lead- \herek, =k, /k. As we see, to this order, the solution fois

ing order non-Newtonian terms are included. Finally, foringependent of the precise form ef Note that the expres-
later convenience, we write down the expression for thesigng given in Eqs(74)—(76) are the same as those for poly-

strain tensor, mer solutiong8,10]. That is, to leading order, the linear
2 + —v relations are the same for both polymer solutions and
€e=\D+A5(D-Vv+Vuv'-D). (69) blends.

Now we have expressed in terms of ¢ andv. Our next
task is to eliminater and e using Eqs(68) and(69) in Egs.
(58) and(59) and carry out a linear analysis for the remain-  We now discuss the linearization of the diffusion equation
ing equations. (58), from which the effect of viscoelasticity on the phase

C. Shift in the stability line
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boundary can be studied. We choose the Flory-Huggins forriThe zero-shear spinodal lindinear stability ling in the y

for the mixing free energy18], — ¢ parameter space is determined by the first three terms of
s 1-¢ V¥, [18]. The last term is the modification of the stability line
_ - _ _ arising from the dynamics of viscoelasticity; this shift is
= —Ingp+ —— +
fm($)=ksT NA|n¢ Ng 1=+ x¢ (1)), 0O(S?), whereSis the shear rate.
(77 The direction of the stability line shift is dependent on the

sign of x, which in turn depends on the details of the inter-

wherey is the Flory-Huggins interaction parameter, and usepolatin - .
. - g functionA(¢). Whenk>0, the effective value of
Eq. (26) for the elastic free energy. Subsituting E¢8S) g reduced, and stability line in the— ¢ plane is shifted to

and(66) into Eq.(58) and making use of Eq¢74)—(76), we larger values ofy (lower temperaturgs On the other hand,

E?)Ericé?tgllctge following linearized diffusion equation in when k<0, the stability line is shifted in the opposite man-
pace, ner. Since, in general, the shear moduli for the individual

9 g ksT speciesA and B involve material parameters, the details of
(ﬁ - SK‘T) D1(K)=—vm— do(1— ¢o)?k? the shift in the stability line cannot be determined explicitly.
IKy 4 In highly symmetric situations, the magnitude of any shift
X[‘I’o+‘P1(Rx,Ry)]¢1(k)- might be small, owing to the small value of the coefficient

[GO-GP]. However, the shift in the linear stability
(78) should, according to the present analysis, correlate with mea-
surements of the interpolating function for the bleAdg).

HereW is an isotropic constant given by If A($)=d k=0 and there is no shift in stability.

Wo(po)= Nacbo + Na(1—dg) 2x+ k(o) (S\o)?, IV. CONCLUSION

(79 We have applied the general two-fluid approach of Doi
where\ o= £,/g, is the average relaxation time and the co-and Onuki[7] to establish model equations for the study of

efficient « is given by the phase behavior, or more precisely, linear stability, of a
polymer blend in the presence of shear flow. A phenomeno-

" 95° , logical form of the shear modulus for a polymer blend is

k(o) = 5%~ g“L“OgO- (80) used, which can be experimentally determined. The modifi-

cations used here allow the kinetic equations to redace
Note thatk depends only on the shear modulus of the blendmally to the solution case in the limit in which one of the
The second term on the right-hand side of EAf) produces species becomes a sméblven) molecule. However, since
an anisotropic modification of the scattering functjdhand features of solid elasticity have been used, taking the limit
is given by remains to be fully justified. Linear analysis of the model
L indicates that the equilibrium stability line is shifted by the
W1 =—2S\o(Ag+ Bo)kyky effect of viscoelasticity when the dependence of the shear
o modulus of the blend on the volume fraction of one of the
+(SN)?[4(Co—2Bo) (kyky)? species is nonlinear. The direction of the shift is dependent
o oo on the material properties of the species and on the range of
—2(Ag+Bo—Do)ki+(Co—Bo)kz], @D volume fraction, so that the nature of the temperature shift is
more complicated than that in polymer solutiof&10].
Physically, this feature of polymer blends can be attributed
Ao=abdo+ b5 *gao+ (1= bo)  gso. (82) o the fact that both species have contributions to the elastic
free energy.

whereA,, By, Cq, andDg are the constants

&
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